翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Pollard rho : ウィキペディア英語版
Pollard's rho algorithm

Pollard's rho algorithm is a special-purpose integer factorization algorithm. It was invented by John Pollard in 1975. It is particularly effective for a composite number having a small prime factor.
==Core ideas==
The ρ algorithm is based on Floyd's cycle-finding algorithm and on the observation that (as in the birthday problem) t random numbers ''x1'', ''x2, ... , ''xt in the range (n ) will contain a repetition with probability P > 0.5 if t > 1.177n1/2. The constant 1.177 comes from the more general result that if P is the probability that t random numbers in the range (n ) contain a repetition, then P > 1 - exp. Thus P > 0.5 provided 1/2 > exp, or t2 > 2nln 2, or t2 > 2n ln 2, or t > (2ln 2)1/2n1/2 = 1.177n1/2.
The ρ algorithm uses g(x), a polynomial modulo ''n'', as a generator of a pseudo-random sequence. (The most commonly used function is g(x) = x2 mod n.) Let's assume n = pq. The algorithm generates the sequence x1 = g(2), x2 = g(g(2)), x3 = g(g(g(2))), and so on. Two different sequences will in effect be running at the same time—the sequence and the sequence . Since p < n1/2, the latter sequence is likely to repeat earlier than the former sequence. The repetition of the mod p sequence will be detected by the fact that gcd(xk mod p - xm mod p, n) = p, where k < m. Once a repetition occurs, the sequence will cycle, because each term depends only on the previous one. The name ρ algorithm derives from the similarity in appearance between the Greek letter ρ and the directed graph formed by the values in the sequence and their successors. Once it is cycling, Floyd's cycle-finding algorithm will eventually detect a repetition. The algorithm succeeds whenever the sequence repeats before the sequence . The randomizing function g(x) must be a polynomial modulo n, so that it will work both modulo p and modulo n. That is, so that g(x mod p) ≡ g(x) (mod p).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Pollard's rho algorithm」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.